Close
 

Figure 2: Proposed paradigm for the reprograming of intermediary metabolism in leukemia cells. (a) In monoculture: leukemia cells maintain an intact Krebs cycle that help in oxidizing pyruvate-derived acetyl-CoA and fatty acid-derived acetyl-CoA which lead to induction of apoptosis. (b) In coculture: leukemia cells with bone marrow-derived stromal cells increase Krebs cycle activity which does not oxidize pyruvate-derived acetyl-CoA, but instead metabolizes most of fatty acid-derived acetyl-CoA that increasing resistance to apoptosis (Figure retrieved from the article of Vélez et al.,[39] after permission for use)

Figure 2: Proposed paradigm for the reprograming of intermediary metabolism in leukemia cells. (a) In monoculture: leukemia cells maintain an intact Krebs cycle that help in oxidizing pyruvate-derived acetyl-CoA and fatty acid-derived acetyl-CoA which lead to induction of apoptosis. (b) In coculture: leukemia cells with bone marrow-derived stromal cells increase Krebs cycle activity which does not oxidize pyruvate-derived acetyl-CoA, but instead metabolizes most of fatty acid-derived acetyl-CoA that increasing resistance to apoptosis (Figure retrieved from the article of Vélez <i>et al.</i>,<sup>[39]</sup> after permission for use)